
A Constructive Proof That There Are Infinitely

Many Primes

Andrew Tomazos

2025-03-12

Introduction

We describe an algorithm that, given any positive integer n, produces n distinct
prime numbers.

Algorithm

1. Initialize: Let S0 be any finite set of distinct prime numbers. (e.g.,
S0 = {2, 7, 11}).

2. Generate a New Candidate Number: Define

xi =

(∏
s∈Si

s

)
+ 1

(e.g., x0 = 2× 7× 11 + 1 = 155).

3. Find New Primes: Let Pi be the set of all prime factors of xi. (e.g.,
155 = 5× 31 so P0 = {5, 31}).

4. New Primes Are Disjoint from Si:

� Since xi ≡ 1 mod s for all s ∈ Si, none of the primes in Si divide xi.

� Therefore, every prime in Pi is a new prime not found in Si.

5. Update the Set:
Si+1 = Si ∪ Pi

(e.g., S1 = {2, 7, 11, 5, 31}).

6. Repeat Until |Si| ≥ n:

� Once |Si| contains at least n elements, return n primes from Si.

Since each iteration introduces at least one new prime, this process always
terminates for any n. The existence of this algorithm proves that there are
infinitely many primes.

1

Example

We illustrate the algorithm for 5 iterations, starting with S0 = {2, 7, 11}.

i Si xi Pi

0 {2, 7, 11} 155 {5, 31}
1 {2, 7, 11, 5, 31} 2407 {17, 19, 73}
2 {2, 7, 11, 5, 31, 17, 19, 73} 487969 {13, 37, 97}
3 {2, 7, 11, 5, 31, 17, 19, 73, 13, 37, 97} 267711443 {3, 421, 2113}
4 {2, 7, 11, 5, 31, 17, 19, 73, 13, 37, 97, 3, 421, 2113} 1123034197009 {7, 149, 123863}

Implementation

Below is a Python implementation of the algorithm:

import sympy

def genera te pr imes (n) :
S = {2 , 7 , 11}
while len (S) < n :

x = sympy . prod (S) + 1
new primes = set (sympy . f a c t o r i n t (x) . keys ())
S . update (new primes)

return sorted (S) [: n]

Example usage
genera te pr imes (20)
output : [2 , 3 , 5 , 7 , 11 , 13 , 31 , 73 , 109 ,

421 , 577 , 8059 , 30631 , 76471 , 245209 ,
987523 , 243941329 , 526827139 , 22280925128419444575931 ,
78547121526724215689368003]

2

